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Current Steering DACs

Dynamic Current Source Matching

Charge Redistribution DACs



Current Steering DACs 

R-2R  Resistor Arrays
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Node voltages ideally stay constant for any input code

Highly sensitive to nonlinearities in switches

How should switches be sized?

Eliminates need for decoder

Review from Last Lecture



Another R-2R DAC 
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Clocks must be nonoverlapping

Does this offer any benefits over previous approach ?

Offers some compensation for capacitances on current sources 

Are there other terminations for the current sources? e.g.  Dual R-2R?

Review from Last Lecture



Switch Implementation Issues

n-channel

p-channel

T-gated

d

d

Switches used extensively in data converters ! 

Basic Simple Switches
Basic Current Steering

d

I

d

• Transistors avoid triode region and 

deep cutoff

• Reduced Boolean Input Levels

Transistors switch between deep cutoff and deep triode

Review from Last Lecture



Data Converter Design Strategies

Performance Threshold

Remember: 
 Need to keep nonideal effects below an acceptable performance threshold  



R-2R DACs 
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Bit Slice

Key characteristic of R-2R Structures

• Area increases linearly with number of bits of resolution

• Binary to thermometer/bubble converter eliminated 

• Simple unary cell can be used for R elements

• Common-centroid layout manageable ??

Key challenges of R-2R Structures

• Switches directly affect R-2R values and ratios

• Voltage on internal nodes must settle for some structures

• If unary cell used, area not optimally allocated for matching



Current Steering DAC
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Just requires matching of current sources  



Current Steering DAC

Critical parasitic capacitors in current-steering DAC
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Current Steering DAC
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• Binary to thermometer decoder eliminated

• Current sources bundled unary cells

• Bundles large for large n



Current Steering DAC

Thermometer

Coded Array
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(BCA)
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Segmented Structure

• Exploits  benefits of both thermometer and binary coded structures

• Common-centroid layout likely only necessary on TCA

• Dramatic reduction in complexity of decoder possible



Current Steering DAC
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Is linearity or output impedance of current source of concern?

Not if individual slices are matched !



Current Steering DAC
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Parasitic capacitance on output of current source problematic



Current Steering DAC
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Current Steering DAC
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Which is better?

Effects of parasitic diffusion capacitance?

Effects of gate capacitance?

Alternative current source cells



Current Steering DAC
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Op Amp can be eliminated so speed can be increased and 

power reduced

RTERM often 50Ω or  100Ω

RTERM can be internal or external

Switch impedance now of concern

Output impedance of current sources now of concern



Current Steering DAC
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Cascode Current 
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Boolean Switch Cell

Cascoding reduces output conductance of current source

No power penalty, slight reduction in overhead



Current Steering DAC
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Boolean Switch Cell

Steer rather than switch current

Reduced swing on control signals



Current Steering DAC
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Current Steering DAC
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• Need only signal swing of             to steer currents (so can reduce turn-on and turn-off times)

• Steering also results in cascoding with M3 and M4 thus increasing output 

impedance of current source (so can probably eliminate M2) 

EB2 2V



Current Steering DAC
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Current Steering DAC
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Current Steering DAC
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Vs vs Vd

Simulation Results: VTH=0.4V, VMIN=0.6V, VMAX=1.07V,VEB=0.3V,γ=1.1

VS swing about 100mV



Multiple-output Transconductance Amplifier
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• Good linearity

• Each additional output requires only one additional transistor

• Relevant if MDAC output desired

• Cascoding of output devices useful if driving resistive load



Current Steering DAC with Supply 

Independent Biasing
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Current Steering DAC with Supply 

Independent Biasing

If transistors on top row are all matched, IX=VREF/R

Provides Differential Output Voltages
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Current Current Steering DAC with 

Supply Independent Biasing
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Usually use bundled unary cells

Can use current steering rather than current switching

(switched LSB:MSB notation)



Multiple-output Transconductance Amplifier
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• Good linearity

• Each additional output requires only one additional transistor

• Relevant if MDAC output desired

• Cascoding of output devices useful if driving resistive load



Current Steering DAC with Supply 

Independent Biasing
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Current Steering DAC with Supply 

Independent Biasing

If transistors on top row are all matched, IX=VREF/R

Provides Differential Output Currents

Thermometer coded structure (requires binary to thermometer decoder)
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Transconductance Amplifier



Current Steering DAC with Supply 

Independent Biasing
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Provides Differential Output Currents
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Usually use bundled unary cells

Can use current steering rather than current switching

(have switched LSB:MSB notation)



Matching is Critical in all DAC Considered
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Obtaining adequate matching remains one of the major challenges facing the designer!



Dynamic Current Source Matching

• φ1,…φk… φn distinct from d1,…dn (not shown)

• Correct charge is stored on C to make all currents equal to IREF

• Does not require matching of transistors or capacitors

• Requires refreshing to keep charge on C

• Form of self-calibration

• Calibrates current sources one at a time

• Current source unavailable for use while calibrating

• Can be directly used in DACs (thermometer or binary coded)
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C
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Often termed “Current Copier” or “Current Replication” circuit



Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration
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Charge Redistribution DACs
• Previous DACs based upon matching of resistors or 

transistors

• Switch impedance was of concern in most of the 

structures

• Capacitor matching can be very good in most 

processes and area required for a given level of 

matching may be smaller for capacitors than for 

resistors or transistors in some processes

• Capacitor linearity is often excellent

Will now focus on building DACs that take advantage of good 

capacitor matching and linearity



A charge redistribution circuit
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A charge redistribution circuit
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Another charge redistribution circuit
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A charge redistribution circuit
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A charge redistribution DAC
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CX does some good things 
(mitigates VOS, 1/f noise and finite gain errors)

Will not consider CX affects at this time



A charge redistribution DAC
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Analog to Digital Converters

Will now focus on design of  ADCs
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n
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Analog to Digital Converters
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Analog to Digital Converters

The conversion from analog to digital in most  ADCs is 

done with comparators

Most ADC design is primarily involved with designing 

comparators and embedding these into circuits that 

are robust to nonideal effects

XIN

XOUT



Nyquist Rate

TSIG

Sampling Clock

t

Nyquist-Rate ADC
XIN(t)

XCL

n

XOUT(kT)

Nyquist Rate Data Converters provide one output for each period of the sampling clock
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Over-Sampled

Quantizer  Levels

Effective Decimated 

Quantizer  Levels

Sampling Clock

Effective Sampling Clock

Over-sampling ratios of 128:1 or 64:1 are common

Dramatic reduction in quantization noise effects

Limited to relatively low effective conversion rates

Over-Sampled Data Converters require multiple sampling clock periods for each output



Data Converter Type Chart
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Nyqyist Rate Usage Structures
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

All have comparable 

conversion rates

Basic approach in all is very 

similar



Flash ADC
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SAR ADC 

• DAC Controller may be simply U/D counter

• Binary search controlled by Finite State Machine is faster

• SAR ADC will have no missing codes if DAC is monotone

• Not very fast but can be small

VIN

DAC
n

CLK

DAC 

Controller

VREF



Stay Safe and Stay Healthy !



End of Lecture 36
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